
I see many websites that are behind a web application firewall (WAF) that
don't have the security settings in their HTTP header configured. Solely
relying on the WAF is a false sense of security because of human error. All it
takes is a bad update or a misconfiguration to leave your website vulnerable
to cross-site scripting, cross-frame scripting, MIME sniffing, HSTS, and data
leakage through referrers. Ideally, you'll also want to configure a content
security policy, but using the previously mentioned settings are good enough
for most circumstances.

These settings are called response headers which are sent after the GET
request from the browser. Response headers are from the web server sent
to the browser instructing the browser how to handle the data that it's going
to receive.

You can change your HTTP headers if you’re using WordPress by installing a
plugin called HTTPS Headers that is user-friendly. If using a plugin isn’t an
option you can find your HTTP header setting in the “.htaccess” file in the
“public_html” folder in File Manager. The settings will be placed at the end of
the “.htaccess” file.

Apache example:

Let's go through the meaning of the five settings and the configuration
options.

 X-XSS-Protection: this setting strips out (escapes) tags or prevents
the page from rendering for Javascript and HTML from user input in
the search box and forms. Without the appropriate tags, the web
server see's the input as plain text and execution doesn't happen.

o Options
 0: Disables filtering
 1: Enables filtering; removes tags

 1;mode=block: Enables filtering; prevents the page from
rendering

 1;report=<reporting-URI>: Only works with Chrome and
must have the report-uri directive from a content security
policy

o Examples
 PHP: header("X-XSS-Protection: 1; mode=block");
 Apache

 <IfModule mod_headers.c>
Header set X-XSS-Protection "1; mode=block"
</IfModule>

 Nginx: add_header "X-XSS-Protection" "1; mode=block";
o Compatibility

 Desktop: Chrome, Internet Explorer, Edge, Opera, Safari
(no support by Firefox)

 Mobile
 Android: Android webview, Chrome, Edge, Opera,

Safari
 Apple: Chrome, Edge, Opera, Safari
 No support in Firefox for Android nor Apple

 X-Frame-Options: this setting prohibits content from one page being
rendered on another page in <frame>, <iframe>, and <object> tags.
This prevents clickjacking where links are hidden to cause a user to
perform an action on another page, e.g., clicking an ad to earn
revenue for another site owner which is fraudulent.

o Options
 Deny: The page can't be displayed in a frame
 SAMEORIGIN: The page can be displayed in a frame only if

it's on the origin server as the page itself
 ALLOW-FROM: The page can be displayed in a frame on

the origin listed in the specified URI
o Examples

 Apache
 Header always set X-Frame-Options SAMEORIGIN
 Header set X-Frame-Options DENY
 Header set X-Frame-Options "ALLOW-FROM

https://example.com/"
 nginx

 add_header X-Frame-Options SAMEORIGIN;
 IIS (web.config)

 <system.webServer>
...<httpProtocol>
<customHeaders>
<add name="X-Frame-Options"

value="SAMEORIGIN" />
</customHeaders>
</httpProtocol>...
</system.webServer>

o Compatibility
 Desktop

 SAMEORIGIN: Chrome, Edge, Firefox, Internet
Explorer, Opera, Safari

 ALLOW-FROM: Firefox, Internet Explorer, Safari (no
Chrome support; Edge and Opera are unknown)

 DENY: Chrome, Edge, Firefox, Internet Explorer,
Opera, Safari

 Mobile
 DENY: Chrome, Edge, Firefox, Internet Explorer,

Opera, Safari (Android and Apple)
 SAMEORIGIN

 Android: Android webview, Chrome, Opera
(Edge, Firefox, Safari unknown)

 Apple: Chrome (all others unknown)
 ALLOW-FROM: unknown for all browsers

 X-Content-Type-Options: prohibits text and audio from being changed
from a non-executable file to an executable file that can be used to run
malicious code. Images aren't protected by this setting in any browser.

o Option and Example
 X-Content-Type-Options: nosniff

 HTTP Strict-Transport-Security (HSTS): tells browsers that the website
can be accessed only by HTTPS. If your website has HTTP to HTTPS
redirection there may be some communication that is unencrypted
before the redirection which creates a man-in-the-middle opportunity
that would allow an attacker to injection a header that redirects the
visitor to a malicious website.

o Options
 max-age=<expire-time>: time in seconds that the

browser should cache that the site is to be accessed only
by HTTPS

 includeSubDomains: this is an optional option that applies
this setting to the site's subdomains

 preload: another optional option that is facilitated by
Google. Submitting your domain to Google's preload
services assures that browsers will never connect to your
website over HTTP. More information about preload can be
found here.

o Examples
 Strict-Transport-Security: max-age=<expire-time>

 Strict-Transport-Security: max-age=<expire-time>;
includeSubDomains

 Strict-Transport-Security: max-age=<expire-time>;
preload

 Referrer-Policy: determines which referrer information (URL) should be
included with requests.

o Options
 no-referrer: the referrer header will be left out
 no-referrer-when-downgrade: this is the default behavior;

the origin is sent as the referrer when it's HTTPS to HTTPS,
but not HTTPS to HTTP

 origin: only send the origin as the referrer in all cases
(https://domain.com/page.html will send
https://domain.com)

 origin-when-cross-origin: sends a full URL when a same-
origin request is made but sends only the origin for other
requests

 same-origin: referrer will be sent for same-site origin
requests; cross-origin requests will have no referrer
information

 strict-origin: sends only the origin URL as the referrer
when HTTPS to HTTPS, but not HTTPS to HTTPS

 strict-origin-when-cross-origin: sends a full URL when a
same-origin request is made and send only the origin when
HTTPS to HTTPS, but no header when HTTPS to HTTP

 unsafe-url: send the full URL when same-origin and cross-
origin requests are made

o Syntax
 Referrer-Policy: no-referrer
 Referrer-Policy: no-referrer-when-downgrade
 Referrer-Policy: origin
 Referrer-Policy: origin-when-cross-origin
 Referrer-Policy: same-origin
 Referrer-Policy: strict-origin
 Referrer-Policy: strict-origin-when-cross-origin
 Referrer-Policy: unsafe-url

o Examples
 no-referrer: domain.com/page.html to any domain or path

- no referrer
 no-referrer-when-downgrade

 https://domain.com/page.html to
https://domain.com/otherpage.html -
https://domain.com/page.html is sent

 https://domain.com/page.html
to http://domain.com - no referrer

 origin: https://domain.com/page.html to any domain or
path - https://domain.com/page.html is sent

 origin-when-cross-origin
 https://domain.com/page.html to

https://domain.com/otherpage.html -
https://domain.com/page.html is sent

 https://domain.com/page.html to domain.net -
https://domain.com is sent

 https://domain.com/page.html to http://domain.net
- https://domain.com is sent

 same-origin
 https://domain.com/page.html to

https://domain.com/otherpage.html –
https://domain.com/page.html is sent

 https://domain.com/page.html to https://domain.net
– no referrer is sent

 strict-origin
 https://domain.com/page.html to https://domain.net

- https://domain.com is sent
 https://domain.com/page.html to http://domain.net

– no referrer is sent
 http://domain.com/page.html to any domain or path

– http://domain.com is sent
 strict-origin-when-cross-origin

 https://domain.com/page.html to
https://domain.com/otherpage.html -
https://domain.com/page.html is sent

 https://domain.com/page.html to http://domain.net
– no referrer is sent

 https://domain.com/page.html to https://domain.net
– https://domain.com is sent

 unsafe-url
 https://domain.com/page.html?id=1 to any domain

or path – https://domain.com/page.html?id=1 is
sent

Lastly, make sure you add the “HttpHeadersCookieSecurity” setting that
prohibits cookies from being transmitted until an encrypted connection is
established.

Example:

